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PREFACE

I

This Memorandum has been prepared as a part of a continuing study

of hypersonic lifting-vehicle technology. It is an extension of pre-

vious investigations of the use of aerodynamic forces to provide

lateral-range capability for glide-reentry vehicles. The closed-

form solutions presented here should be of interest to designers and

planners concerned with the preliminary design and capabilities of

hypersonic glide vehicles.
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SUMARY

Approximate closed-form solutions for various flight conditions

have been obtained to determine both the longitudinal and lateral range

cf hypersouic glide vehicles with constant bank angle. Results for

equilibrium-glide vehicles with a constant lift-to-drag (L/D) ratio

and small and slowly changing flight-path angle are presented in graph-

ical form. Other approximate closed-form solutions are also obtained

for glide reentry at very small flight-path angle, near-constant-speed

glide at high altitude, constant-deceleration glide at constant alti-

tude, and constant-deceleration glide at fixed flight-path angle.

The assump! on of a very small flight-path angle (y:: 0) results

in a smaller range prediction than does the assumption of a small and

slowly changing flight-path angle (y 0.01 rad). This is especially

true for prediction of the lateral range of vehicles with high lift-

to-drag ratio. For a vehicle with an L/D of 3, entering at 0.98 or-

bital velocity and decelerating to 0.2 orbital velocity, the assump-

tion of a very small flight-path angle results in predictions that

underestimate lateral and longitudinal range by 22.6 and 22.5 percent,

respectively, in comparison with the predictions based on the assump-

tion of a sriall and slowly changing flight-path angle. In other words,

completely neglecting the flight-path angle in the equations of motion

leads to a conservative range prediction.
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SYMBOLS

A =area

2 (

B1 = DL(cos ~~

C =constant of integration

CD drag coefficient

C L= lift coefficient

2
D=drag force =C pu A12

D = pul(2 IA)D oo/(/D

2
DL P pu/(W/CLA)

0 0 L

g acceleration due to gravity

h = altitude

he = entry altitude

h. - initial altitude
2.2

L = lift force -C pu A/2L

RE =earth's radius

2R u/
0 0/

r-dimensionless altitude, Eqs. (7)

re h h/(RE + he h /RE

r h,/(R-E + he hi/Rr

S -distance alon% the flight path

t =time

u i - flight speed at any given time

Ue = entry speed

u~ = initial speed

fi



u M orbital speed at reference altitude or entry

V = velocity ratio = u/u, Eqs. (7)

V - reentry velocity ratio = u /ue e o
i - initial velocity ratio = ui/u°

W - vehicle weight

x - downrange distance

y - siderange distance

Sw tan INy(O - 2)]

- 2/[CYLID) cos 13
Y - flight-path angle

Y w Wan value of small and slowly changing flight-path angle

e - flight-path angle at entry

: i - initial flight-path angle

S=inverse scale height

C - C( + be) REC

X - lateral-range angle
P - atmospheric density

P0 - reference atmospheric density

- dimensionless density ratio, Eqs. (7)
-= bank angle

w - turn angle

W a turn angle at entry
-
-i initial turn angle
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1. IN7ROD ON

The problem of obtaining closed-form solutions for glide-reentry

vehicles has been an area of interest for many years. Since the general

exact analytical solutions of the fundamental equations of motion for

glide reentry are difficult to obtain, various approximations have been

made by different authors for different flight conditions. For instance,

the closed solutions for very small angles of inclination have been de-

rived by Gazley. (1,2) Eggers et al. also obtained approximate closed-

form solutions for small angles of inclination. (3) Chapman has devel-

oped analytical solutions for small angles of inclination and small

lift-to-drag (LID) ratios. (4) The solutions for moderate angles of

inclination and medium L/D ratios were solved by Lees et al.(5) Loh

has derived closed-form solutions for negative lift at small and large

angles of inclination. (6) For entry at small LID ratios and large an-

gles of inclination, the approximate results of Arthur are available. (7)

Loh later obtained a second-order approximate solution for a nonscil-

latory type of entry trajectory and derived some exact analytical solu-

tions for certain trajectory variations. (8,9) Recently, Cohen has de-

veloped the closed-form solutions for a constant-deceleration flight

path. (10) Loh extended his second-order solutions to an oscillatory

type of entry trajectory. (11) However, most of these results are for

two-dimensional trajectories where the bank angle is zero.

The closed-form solutions for ;_ three-dimensional trajectory at a

constant and very small angle of inclination with constant bank-angle

control have been obtained by Nyland. (12) This Memorandum extends

Nyland's results to obtain exact closed-form solutions for equilibrium-

glide path at small and slowly changing angles of inclination, as well

as for some special cases where the angles of inclination are larger.

A constant bank angle is assumed for both flight conditions. The re-

sults for an equilibrium-glide path at small and slowly changing angles

of inclination are also shown in graphical form to provide information

for preliminary-design purposes.
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The general equations of motion with constant bank angle in a

nenrotating three-dimensional inertial coordinate system, as shown in

Fig. 1, are

-u siny-- (1)
U w

g L(os Co Y (2)

u cos y sin u Cos cos w tan (3)
g 2

u0

where u is the speed at any given time, t is the time, y is the flight-

path angle in the vertica. direction, D is the drag force, W is the

vehicle weight, L is the lift force, § is the bank angle, u0 is the

orbital speed at an entry altitude of 400,000 ft, w is the vehicle

turn angle (heading angle), and X is the lateral-range angle. Equa-

tion (1) pertains to motion along the flight path, Eq. C2) to motion

up and down the local vertical, and Eq. (3) to a direction out of the

flight plane. It is assumed that the altitude region of interest is

below 400,000 ft and that gravity does not change very much between

sea level and 400,000 ft. It is further assumed that

2 2
L sin u cos2 Y cps w tan X
D 2

u
0

and

sin Y Y cos Y --ls
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Local vertical

(Turn angle)

/~~ntrfugalLocal horizon

jforce w

I ~' Flight-path angle)

I Initial heading position\

Earth's center

L (Bank angle)

entry

Fig. 1-Th ree-di men sional flight-trajectory coordinates
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The first assumption indicates that the centrifugal-force component

in the lateral flight plane is small in comparison with the lift compo-

nent in the lateral flight plane. This assumption, which is used through-

out this study, is also used by Nyland. (12) However, for constant-alti-

tude glide at superorbital speeds, this assumption may cause an error of

30 percent for L/D = 2 in heading-angle change, as pointed out by Wang.(
13 )

The second assumption has been relaxed for one special case, given later.

With these assumptions, Eqs. (1) to (3) can be written as

y _ D (4)
g W

- - s (5)

u. sin 0 (6)u L

Let

dS dh = -YdS

(7)

u hVu o 0 RE + h e

where S is the distance along the flight path, h is the altitude, he

is the entry altitude, and RE is the earth's radius. These variables

were introduced by Cohen, but p has been modified. (10) Equations (4)

to (6) can then be rewritten as

dt -. 2 = -2 (8)

dm Y CDP1
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=CL Pcoo 2 1 (9)
dr

dw C LP

d --- 7 sin 1 (10)

where CD and CL are drag and lift coefficients, respectively. Equa-

tions (8) to (10) are first-order ordinary differential equations, and

their general solutions are

CDPCDP r .CDP di
-J-d

'
2  V2 jrYre y j-ydr

V = e + 2e j e dr (11)e
r

Y2 . cL 2o - + 2) di + y2 12
y J T (C Lcos § V2 ed~y (12)

r
e

ScL Pw--- 2-"sin di+w (13)

r e
e

where

=hIl(RE + h.)
e e e

V e  u Ue/u°o

R = entry altitude

u = entry speed at h

Ye= entry flight-path angle at he

we = entry turn angle at he

Equations (11) and (12) have to be solved simultaneously and numerically.

However, for some special reentry cases, as presented below, the solu-

tions can be written in more simple forms.

757
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GLIDE REENTRY TRAJECTORIES AT SMALL AND SLOWLY CHANGIN
FLIGHT-PATH ANGLE

One kind of atmospheric entry by lifting vehicles at small angles

of inclination is an equilibrium-glide flight path, where the gravi-

tational force is balanced by the lift force ard by the centrifugal

force due to the curvature of the flight path. With the assumption

of a slowly changing flight-path angle, or y o 0 and jyj < y, which is

also assumed by Gazley,(I) Eggers et al., (3) and Nyland,(l2) Eqs. (4)

to (6) reduce to

1. - -D (14)
g

2
0 Cos I u- (15)w 2

u
0

u L sin 0 (16)
g W

Gazley(I) and Eggers et al.(3 ) solved Eqs- (14) and (35) for the

two-dimensional case, where 0 = 0, by assuming Y ; O; while Nyland(
12)

obtained solutions for the three-dimensional case, solving Eqs. (14)

and (15) by assuming y t 0 and 0 = constant. Although it is asst ed

here that 0 = constant, Y is considered in Eq. (14) as small but not

negligible. In terms of the new variables V and r, as introduced in

Eq. (7), Eqs. (14) to (16) can be rewritten as

C DP V2 . X ydV2  (14a)
2 Y 2 di

- L V2 cos = 1- V2 
(15a)

2

CLP '  sin 0 = - W2  d u, (16a)

2 di
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Dividing Eq. (14a) by Eq. (15a) yields

dV2 2
dT +  v2  2 (17)

where

C2 = 2
L L

Y Ccos D *cos

and is a function of Y, LID, and . The solution of Eq. (17) is

V2 d j dr J'dr
= e -2) dr + Ce (18)

wheze C is a constant of integration. The initial condition is u u

ath=h orV Vat =re Then Eq. (18) can be rewritten as

at~e di di di rV e ee - e e

e

For constant L/D and §, and small and slowly changing y, 0 is approxi-

mately a const-.nt, or a mean value is assumed for y, ari Eq. (19) can

be reduced to

V2  1 - V:)e(e) (20)

Equation (20) gives the relation between altitude and velocity for con-

stant values of 0. Since 0 is a function of flight-path angle, L/D ra-

tio, and bank angle, any changes in one of these quantities will affect

the vehicle flight-speed and altitude relationship. Dividing Eq. (16)

by Eq. (15) and taking 0 and j at mean values, respectively, one can

obtain the turn angle:



2_:V2

A= -8-

i

a 2) n2+ In (21)

or

2e ) n (22)

2) -- V2

In the flight regime of interest, Y is small and slowly changing.

Therefore it is assumed that a mean value, ., can be obtained. The
initial turn angle is taken as zero in Eqs. -(21) and (22). Dividing

Eq. (14) by Eq. (15). one obtains

- u U Y - L (23)g 2L

Solving Eq. (23) for t as a function of V by assuming constant L/D

and # and mean value Y,

UO i' coS $I Zn 21[V4+I" ] (24
2g 2 ~[Vff+ 4FI 1 I 2]VVp2

Noting that

2 dS

where S is the distance along the flight path, Eq. (23) can be re-

written as

14dS2 u W Y " (23a)
2g dS 2 L ioY

-iCos -Cost
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Solving Eq. (23a) for S as a function of V and r, respectively, one

obtains

S - In 25)
V2 8+2 B

e

and

R
s r-) (26)

where R = U2 /g. The downrange distance can be obtained from
o 0

dx = dS cos w (27)

where x is the distance traveled in the original direction of motion

and can be taken as approximately the distance on earth because of the

small flight-path angle and small ratio of altitude to earth radius.

For constant 6 and LID and mean value Y, Eq. (27) can be integrated as

-R e + 2 )(
= - cos, (Le- ) -n ( V'2 - ( jdi

r e

(28)

In terms of V

2o 011 - 0 + VR v2 cvl- I+ 2 + 2Jn

S 2 2 2 dV2  (29)

e
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Similarly the siderange distance can be obtained for constant I and

L/D and mean value y from

dy - dS sin w (30)

where y is the distance traveled perpendicular to the original direc-

tion of motion, or

RF I -- Ie.d

-RoA 2sin r{ 21re(r-

e

(31)

In terms of V

B 2 -+ V
si An +Lne

R 2 v2 0 V B+ 2 21dV2 (32)

e

where = tan /(O - 2)Y

GLIDE REENIRY TRAJECTORIES AT VERY SMALL FLIGHT-PATH ANGLE

For equilibrium glide at very smal1 flight-path angle, such as

for high-LiD flight, Y Y_ 0. Equations (4) to (6) can be reduced

to

S- (33)
g W

2
L ucos = - -(34)

u
0



U L
w -- sint (35)

From the definition of 5

2 (Y cos 0 (36)

Substituting Eq. (36) into Eqs. (21), (24), (25), (29), and (32),

respectively, one obtains

= sin rIn' (37)

D

U cos _ (V - 1)(V. + 1)

(2g V + 1)(V i - 1) (38)

1 L l-V 2

S ='1Ro  cos n n- (39)

2 o D 1 +VV
cos D sin 7 In

1 L 2
x= R - cos A (40)

2 oD f
v2-

V~V2 _ 1

-sin sin 0 In dI2
1 L 2DvJ

R V u -cos6dF (41 )

where V, U ilu 0 and u. = initial speed.
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Equations (33) and (34) and their results, Eqs. (37) to (41), are the

same as obtained by Nyland. (12)

hIAR-CONSTAT-SPEED GLIDE AT HIGH ALTITUDE

For some applications of atmospheric flight, it may be desirable

to have the lifting vehicle enter at near-orbital speed and fly at

miaxizmun L/D ratio or maximum C and at constant bank angle until it
L

reaches denser atmosphere at an altitude of about 250,000 ft. In this

phase of flight at high altitude, atmospheric drag is assumed to be

nearly equal and opposite to the component of gravity along the flight

path. Thus, there would be little change in vehicle speed and, in the

present notation, this implies that 1/V2 - 1 t 0. Let the atmospheric

density be expressed by the well-known exponential approximation or

p = po e - Ch  (42)

where p is the referece atmospheric density and C is the inverse

scale height. Substituting Eq. (42) into Eq. (7),

0U2 P~2

Poo°2e pCh 2e - r (43)"IA eJIA

where C (RE +he) z.CRE.

Then for flight at small angles of inclination, Eqs. (4) to (6)

can be reduced to

-- Y- Cos 1(45),g W
u L .

- L sin L (46)
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Or in terms of V and r. Eqs. (44) to (46) become

dV2 1 PuO eCr 2 2(44a)
di Y /A

2 --

f Ie - Cr COS = (45a)
df W/CLA

p u 2 --
dj 1 00 -Cr sin (46a)
di -- 2Y W/CLA

Let

2

D PO -

W/D

2Puo

DI.

Then Eqs. (44a) to (46a) can be rewritten as

d V2  1d DDe-Cr V2 2 (44b)

- =D e Cos~ (45b)

dw L- D ' r sin I (46b)
dorY er

For constant W/CLA, Eq. (45a) can be readily integrated to yield
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Y2 Y2 e 1_CS rL j A1  ,e (47)

where

e flight-path angle at entry

i= dimensionless altitude at entrye

A =y2 +B-r e
1 e 1

Hence

- A IA - e-

A1 1

A1

.11 (2 1B1 "

I 1 = + BIe, e 
(48)

Substituting Eq. (48) into Eqs. (44a) and (46a), respectively,

d -v " D = e V -2 (49)

DI
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._1w 1

W+ J.-D e' sin = 0 (50)
di 2FA I L

Integrating Eqs. (49) and (50) for constant W/CDA,

D D _I"

v2 .
e -

e
e  e - ; )

e

DL  . D

D 1 D~ D 1 cl
w e r - -e

DL ' sin [e- - e r ] +w (52)

where V eand w eare initial values of reentry velocity ratio and re-
entry turn angle, respectively.

CONSTAN-DECELERATION GLIDE AT CONSTAW~ ALTITUDE

After rapid and close to constant velocity descent from orbit to

an altitude of about 250,000 ft, many entries of interest may require

the vehicle to fly at constant altitude to perform plane-change ma-

neuvers. In order to maintain vehicle glide at constant altitude, the

gravity has to be balanced by lift force. As the vehicle decelerates,

the lift coefficient has to increase to overcome the reduction in dy-

ramic pressure until the lift force is too small to sustain constant-

altitude flight. In this phase of flight h is essentially constant

and y - -- 0. The governing equat-cns of motion are identical to

that for equilibrium glide at very small flight-path angle except that

L and D are variables, namely,

fi Dg D (53)

-g~ W --
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2
L u__
W = 2 54)

u
0

\

u. L
g w sin (55)

However, in order to prevent skip, the vehicle is required to fly at

variable L/D at almost constant altitude. In addition, the vehicle

may fly at certain fixed bank angles to achieve desired plane changes.

For manned maneuverable vehicles, it may be desirable to perform this

aerodynamic maneuvering in a constant-deceleration mode of flight.

Then i and D become constants. Therefore, it is assumed that the L/D

ratio follows the relationship suggested by Cohen,(1 0) namely,

L/ D (56)

Substituting Eq. (56) into Eq. (54).

W

A cos (57)

or

D 2 (58)CD = V2A2 2cos

where A2 = -1I/g cos § is constant and deceleration (-a) can be spe-

cified in g's. Equation (56) can also be rewritten as

~2(LZI)
C =- (59)
L cag

Then Eq. (53) can be rewritten as
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V u -= constant
u

0

Therefore flight is at a constant rate of deceleration, and

V= V. + - t (60)1 u
0

Solving Eq. (55), one obtains

(L= o I. + g tan In V + -(V + V (61)S U °

or

w~iy- tan (e +V2~ ~ (62)

For a bank angle -. 90 deg, Eqs. (61) e ad (62) approach infinity and

the results are not applicable, since equations of motion are for

< 90 deg. The vehicle range can also be obtained from Eq. (53):

2

s= 0 (V2 _ V2~) (63)u

CONSTANT-DECELERATION GLIDE AT FIXED FLIGHT-PATH ANLE

For manned reentry flight, it may be desirable to maintain con-

stant deceleration during the high-speed portion of flight after con-

stant-altitude glide. If the flight-path angle is fixed, then Eqs. (1)

to (3) can be rewritten as

u =sin Y - constant (64)9
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0= Cos Cos y (65)
-W 2

\ 
0)

L

Sw cos y a sin (66)

Equations (64) to (66) can be rewritten in terms of new variables

V and r as

dV C DPV2 2sin y (64a)

0 =1 5CLV2 cos - I V2  (65a)
L Cos Y

dw CLP sin (66a)
di 2Y cos Y

If the same LID ratio expression suggested by Cohen(10) is assumed,

namely,

L M A2 (I _ (56)

substituting Eq. (56) into Eq. (65) gives

D W cos Y (67)
A2 cos I

or

C 2 cosY (68)
V2A2 cos
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A 2 -cos Y
- - sin Y) Cos

Equation (66) can also be rewritten as

CL=2A 2 Cos y' ( 1~2 ~cos 2 y (69) V
SCos P R sin Y Cos2  (

Substituting Eq. (67) into Eq. (64) and integrating with respect to t,

V V. + ; " (70)1 U
0

Solving Eq. (64a) for V as a function of r gives

2

PoUo CA - - p 2 A

0 0 ~ 00ro D -Cr

V2 2sinY e W5 e dr

2
0 Pu 0CA-eC

+ e Y(71)1

Dividing Eq. (64) by Eq. (66), one obtains

W = .+ i n + v 2V2] (72)
2 L V

1

Equation (64) can be rewritten as
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dS2 = sinY Ay o (64b)
dS 2

or
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III. DISCUSSION AND CONCLUSIONS

The general closed-form solutions presented in Eqs. (11) through

(13) can be solved nmierically if the quantities W/CDA, W/CLA, p, and

0, as functions of alcitude, are known. For special cases, such as

equilibrium-glide trajectories with small and slowly changing flight-

path angles, the closed-form solutions for constant L/D ratio and

bank angle are given in Eqs. (20) through (22), (24) through (26), (28),

(29), (31), and (32) in terms of the parameter 0 = 2/[Y(L/D) cos I].

One can directly obtain the value of B for various combinations of Y,

L/D, and cos 0 from Fig. 2. When y and are fixed, B decreases with

increasing L/D. (The range of 0 which is of interest varies with L/D

as shown in Fig. 9.)

All the results shown in Figs. 3 to 9 are for equilibrium glide,

where the Y term is retained in the equations of motion and is taken

at mean value. For conditions where L/D, Y, and § are not constants,

one can divide the flight path into intervals and can apply all the

results by using mean values of L/D, y, and 0 in each interval. Total

flight time and total range can be obtained by suming up all the in-

tervals.

The flight-speed to entry-speed ratios, as functions of altitude

ratios for different values of 0 as given by Eq. (20), are presented

in Fig. 3. For a given 5 value, the speed ratio is fixed for a given

altitude. The results also indicate that the flight speed decreases

with decreasing altitude. However, the rate of decrease is slower for

the higher values of 0. For given valuer of L/D, Ve, and small and

slowly changing Y, the trajectory becomes steeper with increasing bank

angle. A high-L/D vehicle will, in general, fly a steeper equilibrium-

glide path.

Figure 4 shows the influence of entry speed, bank angle, and

flight-path angle on turn angle as expressed by Eq. (21). The re-

sult indicates that the turning rate increases as the vehicle slows

down. Large turn angles can be accomplished with high L/D and steep

bank angle. The effects of entry speed on turn angle are insignifi-

cant at low values of flight speed and small values of Y(L/D) sin 0.
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4(deg) 30
45-

0.01 60-----
2000 75---

85---

2

0.02 ,(L/D) cos4)1000-

800- 0.01
-o0o.03 x-"

600- 0.04

400-

8e 0.03 -. ..-.

0.01 ,.

1 0.04 o
0.02

N-I c

1000~0.03

80 8:4\<
60 o.04

40

20

0 1 2 34
L,'D

Fig.2-Relation between flight-path angjle, LID ratio,
bank angle,, and parameter /
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0.8

_I-* /001
-'Ol

lo/

I,00 .00,7 I

.2 0.6

.0-.20.6 /

0.5-

Ve =0.98 C
0.95-

01 0.2 0.3 0.4 0.5 0.6 0.7 0.B 0.9 1.0
V/Ve

Fig.3-Reentry glide path for constant /3
(Eq. (20))
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0.1
2 ton 4 I

0.08 -(0-2) I
0.06 0.0i91I

0.27 Ve = 0.98

0.02 = 0.900 0.021-

0.014
0.007

0

f0.01 -

0.002 j

0 . 00 ! a I! i I .. .I

0 0.2 0.4 0.6 0.8 1.0
V/Ve

Fig.4-Influence of entry speed, bank angle,
and flight-path angle on turn angle

(Eq. (21))



1.0

Ve = 0.98
f= 0.01 rod

0.8 4,=30 deg

~ ~ (a462)

0

< 04

0.2 5 04 X(231)

V/VeO0J\

0 L00 0.5 1.0 1.5
Turn angle, c1(rod)

Fig.5a-Turn angle and altitude relatilon
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The altitude and turn-angle relation as obtained from Eq. (22)

is rL&'JWL& J.LI. XJ60 L 4O L Ja L&V.UJS1L PC- C% rF %U.A I.IL. .L& 4 &%. &

with increasing bank angle and the turning rate is highest at the end

of a turn for constant bank angle. A comparison of Figs. 5b and 5d

shows that for given flight conditions, the turn angle is larger for a

small flight-path angle. Figures 5b and 5e show that for fixed 0, bank

angle, flight-path angle, and velocity ratio, the lower-entry-velocity

vehicle will achieve a given turn angle at higher altitude. As men-

tioned previously, neglecting the lateral centrifugal term in the equa-

tions of motion may result in a higher turn-angle prediction. This

error czn be 30 percent, as pointed out by Wang 13) for the severe con-

ditions he employed.

Equation (24) can be rewritten as

-F 2-1 ~[ V eF + F 1t B(0 - 2) - An [ __ _V4 W (24a)

But O( - 2): 0 for larga values of 0, hence

t gyl 5 )2gt (24b)

0 u cos

The flight times for various flight conditions as given by Eq. (24)

are plotted in Fig. 6. Substituting Eq. (24b) into Eq. (24a) shows

that t is proportional to L/D cos §. In other words, the time de-

creases to zero as the bank angle approaches 90 deg or L/D approaches

zero. It is evident that high-entry-speed and high-L/D vehicles

require a longer time to slow down to the same speed ratio. For a

bank angle equal to 90 deg, the equations are not applicable, since

the flight path would resemble a ballistic trajectory rather Lhan a

lifting trajectory.

The flight-path length, S, for two different flight-path angles,

y = 0.01 and 0.02, is shown in Figs. 7a and 7b, which indicate that

more than half of the distance to be flown will be in the region

90
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where the flight speed is greater than 90 percent of the entry speed.

In general, the flight-path length increases with increasing L/D at

a given speed ratio.

As expected, if mean value y is used, the flight-path length is

a linear function of altitude, as given by Eq. (26) and shown in Fig.

8. it can be seen that the flight-path length would be doubled when-

ever the flight-path angle is reduced by approximately half.

The longitudinal and lateral ranges for constant-bank-angle flight

are given by Eqs. (28) or (29) Ond (31) or (32), respeccively. The

numerical results for L/D = 1, 2, 3, and 4, and V = 0.98 and 0.90,e
are presented in Figs. 9a through 9e. It is clear that large ranges

can be achieved by increasing L/D. The maximum lateral range can be

obtained with a bank angle of about 43 deg at L/D = 1 and Ve = 0.98.

However, this bank angle for maximum lateral range shifts to about 33

deg at L/D = 3 at low speed. The vehicle with high L/D (> 3) will pro-

ceed along its spiralling course far enough to achieve large heading

changes and will be capable of reversing its direction of flight as

it reaches very low speed. At a given speed ratio, both longitudinal

and lateral ranges are very sensitive to the initial entry speed. A

comparison of Figs. 9c and 9e shows that for y = 0.01 and L/D = 3, a

reduction of entry speed from 0.98 u0 to 0.90 u0 may reduce the longi-

t.udinal range by more than half and may cut the lateral, range by more

than one-third by the time the speed ratio of 0.1 is reached.

A comparison of equilibrium-glide results obtained in Ref. 12

(based on the assumptions of a v small flight-path angle) and those

of the present analysis (based on the small and slowly changing flight-

path angle of Y = 0.01 rad) -s given in Table I and Fig. 10. These

show that the assumption of a vei.y small flight-path angle results in

a smaller range prediction particularly for -he lateral range of high-

L/D vehicles, and in prediction of a larger bank-angle requirement for

maximma lateral range.

One of the results of this study is a closed-form solution for

predicting the performance of equilibrium-glide vehi-les more accu-

rately than was possible in the past without machine programming of

the equatious of motion directly. It can be concluded that for

~ _____ ______ ______ __...................___

--- <u .
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Table1. 1

EFFECT OF L/D AND FLIGI1T-FATH ANG11 ON
LONGITUDINAL AND LATERAL RANGESa

(Ie = 0.98, V = 0.2V )

x at at

Y: Ymax  1*0.0l Ymax YI- '°0 YmaX wO01

L/D (rad) (n mi) YY O (n mi) Xy 0  (deg) Y_0

1 0.01 580 1.068 4,197 1.119 42 0.933
;0 543 3,750 45

2 0.01 2,236 1.171 9,080 1.187 38 0.927
t0 1,910 7,650 41

3 0.01 4,780 1.292 14,450 1.290 33 0.892
;0 3,700 2i9,200 37

4 1 0.01 8,940 1.277 28,550 1.818 27 0.871
10__ 7,000 1 15,700 _ 31

aBased on assumptions of a very small flight-path angle (Y 0 0) and a

small and slowly changing flight-path angle (Y 0.01 rad). Data for
Y 0 were obtained from Ref. 12.

orbital-speed reentry, a vehicle with L/D = 3, gliding at a flight-

path angle of 0.01 rad and a constant bank angle of about 33 deg, can

provide a reasonable lateral range greater than the earth's radius.

In addition, more than half the longitudinal range will be achieved

before the flight speed reaches 90 percent of the reentry velocity.

However, half the lateral range will be achieved when the vehicle

velocity is approximately 60 percent of the reentry velocity for L/D

1, and 70 percent for L/D = 3, at optimum bank angle.

Z77
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